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Abstract

We present a real-time performance-driven facial animation system
based on 3D shape regression. In this system, the 3D positions of
facial landmark points are inferred by a regressor from 2D video
frames of an ordinary web camera. From these 3D points, the pose
and expressions of the face are recovered by fitting a user-specific
blendshape model to them. The main technical contribution of this
work is the 3D regression algorithm that learns an accurate, user-
specific face alignment model from an easily acquired set of train-
ing data, generated from images of the user performing a sequence
of predefined facial poses and expressions. Experiments show that
our system can accurately recover 3D face shapes even for fast mo-
tions, non-frontal faces, and exaggerated expressions. In addition,
some capacity to handle partial occlusions and changing lighting
conditions is demonstrated.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Animation;

Keywords: face tracking, monocular video tracking, 3D avatars,
facial performance, user-specific blendshapes
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1 Introduction

Performance-based modeling provides an essential means of gener-
ating realistic facial animations, as detailed facial motions and ex-
pressions are often difficult to synthesize convincingly without nat-
ural examples. This approach has commonly been used in film and
game production to better convey emotions and feelings through
virtual characters. This form of non-verbal communication could
also play an important role in personal interactions via avatars,
which have been growing in popularity through online games and
video chats. For such applications there is a need for performance-
driven facial animation that can operate in real-time with common
imaging devices.

Facial performance capture is a challenging problem that is made
more manageable in many techniques by using special equipment,
such as facial markers [Williams 1990; Huang et al. 2011], cam-
era arrays [Bradley et al. 2010; Beeler et al. 2011], and structured
light projectors [Zhang et al. 2004; Weise et al. 2009]. Towards a
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Figure 1: Our real-time facial animation system using a web cam-
era. The camera records 640 × 480 images at 30 fps. Our system
runs at over 24 fps on a PC.

more practical solution for ordinary users, Weise et al. [2011] pre-
sented a real-time method that utilizes depth maps and video from
Microsoft’s Kinect camera. While compelling results have been
demonstrated with their system, a method based instead on con-
ventional web cameras would be more broadly practical because
of their widespread availability with PCs as well as on tablets and
smartphones. Face animation methods have also been designed for
basic video input [Essa et al. 1996; Pighin et al. 1999; Chai et al.
2003; Vlasic et al. 2005], but their heavy reliance on optical flow or
feature tracking can lead to instability, especially in cases of rapid
head or facial motions, or changes in the lighting/background.

In this paper, we propose a robust approach for real-time
performance-based facial animation using a single web camera (see
Fig. 1). As a setup for the system, the user acts out a set of standard
facial expressions, the images of which are used to train a user-
specific regressor that maps 2D image appearance to 3D shape. At
run time, this 3D shape regressor is used in tracking the 3D posi-
tions of facial landmarks from a 2D video stream. The head’s rigid
transformation and facial expression parameters are calculated from
the 3D landmark positions, and they are then transferred to a digital
avatar to generate the corresponding animation.

Our main technical contribution is a novel 3D shape regression
algorithm for accurate 3D face alignment. Regression modeling
serves as an effective tool for learning a predictive relationship be-
tween input variables (e.g., a 2D face image) and an output response
(e.g., the corresponding 3D facial shape) from a set of training data.
To facilitate modeling, suitable training data for our regressor is ef-
ficiently constructed using the predefined setup images of the user
and simple manual adjustments to automatic face alignment results
on those images. From this data our 3D shape regressor learns an
effective prediction model through an inherent encoding of the geo-
metric relationships that the user’s data contains. This user-specific
regression modeling approach is experimentally shown to surpass
previous appearance-based tracking methods that fit a generic 3D
face model to 2D images.

Our facial animation system is highly practical because of its fol-
lowing properties:

• Ease of use: requires just an ordinary web camera and no fa-
cial markers; involves a simple one-time setup step.
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• Robustness: effectively handles fast motions, large head ro-
tations, and exaggerated expressions; deals with changes in
lighting and background to a moderate extent; works well in
a wide range of environments from indoor offices to outdoor
surroundings under sunlight.

• Computational efficiency: computationally independent of
the resolution of video frames; takes less than 15ms to pro-
cess a video frame at run time, without the need for a GPU.

With this level of performance and its modest requirements, the
system is suitable even for mobile devices.

In the remainder of the paper, we first review some related work
on facial performance capture, facial feature tracking, and 3D face
models. In Sec. 3 we present an overview of our system. The fol-
lowing sections describe the components of our algorithm, includ-
ing the 3D shape regression in Sec. 4 and facial tracking in Sec. 5.
Sec. 6 presents experimental results, and the paper concludes in
Sec. 7 with a discussion of future work.

2 Related Work

Facial Performance Capture. Facial animation systems based on
performance capture aim to measure expressions and motions of a
user’s face and apply them to a target model. Various techniques
have been presented for acquiring these measurements. Methods
that employ direct interactions with the user are often referred to
as active sensing techniques. They may involve placing markers on
the face [Williams 1990; Huang et al. 2011] or projecting structured
light patterns [Zhang et al. 2004; Weise et al. 2009] to facilitate
surface point tracking or 3D modeling. These approaches can pro-
vide high resolution and reliability in face measurement, but their
intrusiveness makes them less practical for general settings. An
exception to this is the Kinect-based method of [Weise et al. 2011].
Because it utilizes projections of invisible, infrared light, the Kinect
is relatively nonintrusive in its face capture.

Passive systems do not interfere with their environment to gain in-
formation in the sensing process, but tend to have lower accuracy
as a result. Several methods employ just a single conventional cam-
era to capture facial motions [Essa et al. 1996; Pighin et al. 1999;
Chai et al. 2003; Vlasic et al. 2005]. Camera arrays have also been
used with the advantage of providing multi-view stereo data for
3D reconstruction [Beeler et al. 2010; Bradley et al. 2010; Beeler
et al. 2011]. Since widespread usability is a motivating factor in our
work, we utilize a single video camera to record facial configura-
tions. Though video frames provide only 2D appearance data, we
infer 3D face shape from this input with the help of face models.

Appearance-based Facial Feature Tracking. Facial motion cap-
ture requires accurate tracking of facial landmarks such as the cor-
ners of the eyes and ends of the mouth. For conventional video
input, optical flow is typically applied for this purpose. Tracking
of individual features by optical flow, however, is unreliable es-
pecially for less salient landmarks, because of noise in the input
data. For more robust tracking, geometric constraints among the
features are normally incorporated in the flow computation so that
the tracking of each feature is influenced by the positions of others.
Different types of geometric constraints have been proposed, in-
cluding restrictions on feature displacements in expression change
[Chai et al. 2003], adherence to physically-based deformable mesh
models [Essa et al. 1996; DeCarlo and Metaxas 2000], and cor-
respondence to face models constructed from measured examples
[Pighin et al. 1999; Blanz and Vetter 1999; Vlasic et al. 2005]. In
[Weise et al. 2011], motion priors derived from pre-recorded ani-
mations are also used in conjunction with a 3D face model.

Our work also utilizes a model-based approach to locate facial land-
marks, but only as part of an offline face alignment step in which
errors are manually corrected by the user. At run time, instead of fit-
ting a generic face model to optical flow, our method directly infers
3D shape from 2D image appearance through boosted regression, a
powerful technique for learning a mapping function from training
data. In our system, the regressor learns from user-labeled training
data that is more accurate than what can be produced by automatic
face alignment techniques. Moreover, the geometric relationships
encoded in the training data are specific to the given user, and thus
provide a more precise constraint on tracking results than that of
a generic face model. These features lead to appreciable improve-
ments in tracking performance. The use of shape regression for this
application was inspired by the work in [Cao et al. 2012], which
deals with 2D face alignment that is not tailored to a particular user.
Our presented regression to 3D shapes allows us to take advantage
of a user-specific 3D face model to better track facial expressions
while accounting for configurations that are not well represented by
linear interpolation of the training data.

Regression-based Generation of Virtual Avatars. Regression-
based approaches have previously been used in the generation of
virtual avatars. Saragih et al. [2011] synthesized training pairs for
various expressions of a user and an avatar using a generic expres-
sion model, and learned a mapping function between the two. At
run time, the user’s face is tracked by fitting a deformable face
shape model, which is then used with the learned map to generate
the corresponding shape for the avatar’s face. Huang et al. [2012]
take a similar approach that instead learns a regression model be-
tween shape differences and appearance/texture differences from
that of a neutral face. Shape differences of a source face are trans-
ferred to the target face by applying corresponding affine transfor-
mations to triangles in the facial mesh model. In contrast to these
techniques, which employ regression to learn mappings between
a source face and target face over various expressions, ours uses
a regression-based approach to improve 3D face alignment, while
taking advantage of user-specific blendshapes for expression trans-
fer. It is through this novel face alignment technique that our system
obtains robust performance over large head rotations and exagger-
ated expressions.

3D Face Models. Various 3D models for human faces have been
used in computer graphics and computer vision. One common form
is as linear models based on principal components analysis (PCA).
PCA shape models have commonly been fit to face images to re-
cover facial shape [Blanz and Vetter 1999; Matthews et al. 2007;
Cootes et al. 2012]. PCA has also been used to model other fa-
cial shape descriptors, such as surface height and surface gradient
fields [Castelan et al. 2007]. While PCA face models provide a
compact representation and computational simplicity, these generic
parametric models have a limited capacity to represent the partic-
ular detailed shape variations of an individual’s facial expressions,
due to the limited number of PCA dimensions that can be used in
practice. In addition, using a parametric model for alignment is
less than ideal, since smaller PCA model errors do not necessarily
equate to smaller alignment errors. Instead of using a fixed para-
metric shape model, our regression-based approach encodes the
shape constraints of a given user in a non-parametric manner that
can flexibly represent the particular facial expressions of the user.
Linear models have also been used in reconstructing 3D face shapes
through structure-from-motion [Xiao et al. 2006], but as it involves
factorization of a matrix containing 2D feature point positions over
multiple frames, this would be unsuitable for on-the-fly processing
of video streams.

Often used for face animation are models based on blendshapes, a
representation whose basis consists of a set of facial poses that span
a valid space of expressions. From a blendshape model, anima-
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Figure 2: Pipeline of our system. Top: preprocessing in the one-time setup step. Bottom: run-time algorithm.

tions can be generated by 3D shape morphing [Pighin et al. 1998]
or through linear combinations of basis poses [Lewis and Anjyo
2010; Seo et al. 2011]. Multilinear models represent a decompo-
sition of the blendshape basis that allows for separate control of
different facial attributes (e.g., identity, expression, mouth articula-
tion) [Vlasic et al. 2005]. In contrast to PCA models, blendshapes
have the important advantage that a given facial expression among
different people corresponds to a similar set of basis weights. Many
face animation methods take advantage of this property to effec-
tively transfer expressions from the user to an avatar. In this work
we additionally utilize the blendshape representation to reduce am-
biguity in fitting 3D face shapes to 2D images when constructing
the regression training set. For retargeting motions between struc-
turally different faces, Kholgade et al. [2011] presented a layered
facial motion model, in which the source performance is decom-
posed into emotion, speech and blink layers, whose basis coeffi-
cients are then transferred to the corresponding layers of the target
face. With bases composed of extreme configurations that enclose
the space of each layer, this model bears similarities to blendshapes
and can potentially be incorporated within our system.

3 System Overview

Our method begins with a setup step in which images are captured
of the user performing a set of standard expressions and specified
head poses. In these images, a set of facial landmarks are automat-
ically located using a 2D facial feature alignment technique. Any
of the landmark positions can be manually corrected by the user
if needed. We then derive user-specific blendshapes from these la-
beled images and use the blendshape model to calculate for each
image its 3D facial shape, composed of 3D landmark positions.
All of the input images and their 3D facial shapes are then used to
train the user-specific 3D shape regressor. With this regressor, the
3D facial shape for each video frame can be computed in real time,
and is used to estimate the rigid head transformation and facial ex-
pression. These parameters can be easily mapped to an avatar rep-
resented by expression blendshapes to drive the virtual character.
Fig. 2 displays the pipeline of our system.

Coordinates Representation. In our pipeline, three different co-
ordinate systems are used: object coordinates, camera coordinates
and screen coordinates.

Object coordinates: Similar to many facial animation techniques
(e.g., [Weise et al. 2011]), we represent facial expressions in terms
of user-specific expression blendshapes. An expression blendshape
model contains the user’s neutral face mesh plus 46 blendshapes
B = {B0, B1, ..., B46} based on the Facial Action Coding Sys-

tem (FACS) [Ekman and Friesen 1978]. With these blendshapes,
facial expressions of the user are then replicated through linear
combinations. The blendshape meshes are aligned by their cen-
troids and defined in object coordinates. A face mesh with any

expression can be represented as B = B0 +
∑46

i=1 αiBi, where
a = {α1, α2, ..., α46} is a vector of expression coefficients.

On a face mesh is a set of landmark vertices, which correspond to
certain facial features such as eye corners, nose tip, points along
the brow and mouth boundaries, and points along the nose and face
contours. The position of each landmark in object coordinates is
denoted as x̃i.

Camera coordinates: Any face mesh B represented in object coor-
dinates can be transformed to camera coordinates by a translation
and rotation. We represent the transformation as a 3× 4 matrix M,
such that the position of a landmark in the object space, x̃i, can be
transformed to camera coordinates through xi = M(x̃i, 1)

T . We
define the collection of 3D landmark positions in camera coordi-
nates as the 3D facial shape S for the face mesh.

Screen coordinates: A 3D point in camera coordinates can be trans-
formed to a 2D position in screen (or image) space through a 3× 3
perspective projection matrix Q. For a 3D point p in camera co-
ordinates, the projection matrix firstly transforms it to the 2D im-
age space with homogeneous coordinates uh = (uh, vh, w) by
uh = Qp. Then, the vertex’s 2D position in the image can rep-
resented as u = (u, v) with u = uh/w, v = vh/w. For conve-
nience, we denote as ΠQ the mapping function that transforms a
3D position p in camera coordinates to a 2D position u in screen
coordinates:

u = ΠQ(p). (1)

Capture of Setup Images. In constructing a user-specific face
model, we first capture a pre-defined sequence of setup images con-
sisting of the user’s face under a set of different facial configura-
tions. These configurations are separated into two classes. The first
is due to rigid motion, and is captured for 15 different head poses.
These poses consist of head rotations over a sequence of angles with
a neutral expression. The rotations are expressed in Euler angles as
(yaw, pitch, roll) and include the following: yaw from −90◦ to 90◦

at 30◦ intervals (with pitch and roll at 0◦); pitch from −30◦ to 30◦

at 15◦ intervals except for 0◦ (with the other angles at 0◦), and roll
with the same sampling as pitch. Note that the user need not match
these rotation angles exactly; a rough approximation is sufficient.

The second class is non-rigid motion and consists of 15 different
expressions each at three yaw angles (−30◦, 0◦ and 30◦). Large ex-
pressions that vary widely among different people are used. Specif-
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Figure 3: Labeled landmarks for two captured images (a)(c), and
projections of landmark vertices from the face meshes fit to the two
images (b)(d).

ically, they are mouth stretch, smile, brow raise, disgust, squeeze
left eye, squeeze right eye, anger, jaw left, jaw right, grin, chin
raise, lip pucker, lip funnel, cheek blowing and eyes closed.

In total, we capture 60 images for each user. The captured images
for a user are provided in the supplementary material. Note that
more images of different head poses and expressions could improve
the accuracy of face tracking but would also introduce much more
user interaction and increase the computational cost. In our ex-
periments, the current image set provides a good tradeoff between
accuracy and efficiency.

Landmark Labeling. To each facial image captured in the pre-
vious step we apply 2D face alignment to automatically locate 75
landmark positions, which are divided into two categories: 60 in-
ternal landmarks (i.e., features on eyes, brows, nose and mouth)
located inside the face region, and 15 contour landmarks (exhib-
ited in Fig. 3(a)(c)). Any alignment method may be used for this
purpose, and in our implementation we employ the algorithm in
[Cao et al. 2012]. The automatically detected positions may need
adjustment in some images, so our system allows the user to man-
ually correct them with a simple drag-and-drop tool to obtain 2D
alignment results of ground truth quality. Note that each landmark
position in the image corresponds with a landmark vertex in the
3D facial shape, such that the projection of the 3D vertex onto the
image should match the 2D landmark point. These labeled images
are used to generate user-specific blendshapes with the method de-
scribed in Sec. 4.1.

3D Shape Regression. Given the labeled facial images, user-
specific blendshapes and the camera’s projection matrix, we fit the
rigid motion parameters (transformation matrix M) and expression
coefficients a to the face in each image. Applying these values to
the blendshape model gives us a 3D face mesh that matches the
image’s landmark positions. As the mesh vertices corresponding
to the face contour may continually change in a video stream, for
computation efficiency we replace the 15 contour landmarks with
15 internal landmarks whose 2D positions in the image are com-
puted by projecting a set of pre-defined vertices in the fitted mesh
onto the image (exhibited in Fig. 3(b)(d)). The 3D facial landmark
positions on the mesh are then used to compose the 3D facial shape.
The details of this procedure are presented in Sec. 4.2.

From a training set consisting of the labeled 2D images and corre-
sponding 3D facial shapes, we learn a shape regression model for
automatic 3D facial feature alignment. The training algorithm for
the user-specific 3D shape regressor is described in Sec. 4.3.

At run time, the video frame along with the 3D facial shape com-
puted for the previous frame are taken as input to the 3D shape re-
gressor. The regression algorithm then outputs the 3D facial shape
for the current frame in real time. Sec. 4.4 provides the details of
this on-the-fly regression.

Tracking and Facial Animation. The calculated 3D facial shape
is then used with the user-specific blendshapes to estimate the rigid
motion parameters and expression coefficients. We formulate this

as an optimization problem, which can be solved iteratively and
gives reliable results even for strong expressions and rapid head
movements. These tracking parameters are then applied to the ex-
pression blendshapes of a virtual avatar to drive its facial animation.

4 3D Shape Regression

Our regressor takes an image I and an initial estimate Sc of the
3D facial shape as input, updates Sc iteratively, and outputs a 3D
facial shape S that is well aligned with the facial features in the
input image. The 3D shape regression process involves four steps:
generating the user-specific blendshapes, constructing the training
set, training the regressor, and applying the regressor at run time.
Each of these steps is described below.

4.1 User-specific Blendshape Generation

We generate user-specific blendshapes from the user’s setup images
with the help of FaceWarehouse [Cao et al. 2013], a 3D facial ex-
pression database containing the data of 150 individuals from var-
ious ethnic backgrounds, with 46 FACS blendshapes for each. A
bilinear face model with two attributes, namely identity and expres-
sion, is built from the database, i.e., as a rank-three (3-mode) core
tensor Cr (11K mesh vertices × 50 identity knobs × 47 expres-
sion knobs). With this tensor representation, any facial expression
of any identity can be approximated by the tensor contraction

F = Cr ×2 w
T
id ×3 w

T
exp, (2)

where wid and wexp are the column vectors of identity weights and
expression weights in the tensor, respectively.

We employ an iterative two-step approach to compute the blend-
shapes using this bilinear face model. First, for each input image
i, we find the transformation matrix Mi, the identity weights wid,i

and the expression weights wexp,i such that the projections of the
3D landmark vertices on the generated mesh match the 2D labeled
landmark positions on the image. This can be achieved by mini-
mizing the following energy:

Ed =
75
∑

k=1

∥

∥

∥
ΠQ

(

Mi(Cr ×2 w
T
id,i ×3 w

T
exp,i)

(vk)
)

− u
(k)
i

∥

∥

∥

2

,

(3)

where u
(k)
i is the 2D position of the k-th landmark in image i, and

vk is the corresponding vertex index on the mesh. Given the pro-
jection matrix of the camera, we can apply a coordinate-descent
method to solve for Mi, wid,i and wexp,i.

In the second step, we refine the identity weights wid, which should
be the same for all the images since they all show the same person.
This is done by fixing the transformation matrix Mi and expres-
sion weights wexp,i that were computed for each image i, and then
computing a single set of identity weights wid over all the images
by minimizing

Ejoint =
n
∑

i=1

75
∑

k=1

∥

∥

∥
ΠQ

(

Mi(Cr ×2 w
T
id ×3 w

T
exp,i)

(vk)
)

− u
(k)
i

∥

∥

∥

2

.

(4)
The two steps are iteratively repeated until the fitting results con-
verge. In each iteration, we update the vertex indices correspond-
ing to contour landmarks as in [Yang et al. 2011]. Convergence is
reached in three iterations in our experiments.

Once we obtain the identity weights wT
id, we can construct the ex-

pression blendshapes {Bi} for the user as

Bi = C ×2 wid ×3 (Ǔexpdi), 0 ≤ i < 47, (5)
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Figure 4: Blendshape examples generated for two subjects.

where Ǔexp is the truncated transform matrix for the expression
mode in FaceWarehouse, and di is an expression weight vector with
value 1 for the i-th element and 0 for other elements. Examples of
blendshapes computed in this manner are shown in Fig. 4.

4.2 Training Set Construction

3D Facial Shape Recovery. For each of the n labeled setup images
of the user with different head poses and facial expressions, we re-
cover the corresponding 3D facial shape to use as training data for
the 3D shape regressor. This requires solving for the rigid trans-
formation M from object to camera coordinates and the expression
coefficients of the user’s blendshapes a = {α1, α2, ..., α46}. Given
the expression blendshapes {Bi} for the user and the camera pro-
jection matrix Q, the error between the labeled 2D landmark posi-
tions and the projection of the 3D landmark vertices is computed as
the following energy:

El =

75
∑

l=1

∥

∥

∥

∥

∥

ΠQ(M(B0 +

46
∑

i=1

αiBi)
(vl))− q

(l)

∥

∥

∥

∥

∥

2

, (6)

where q(l) is the 2D position of the l-th labeled facial landmark in
the image, and vl is the corresponding vertex index on the mesh.

Since the setup images consist of pre-defined standard expressions,
their blendshape expression coefficients should be consistent with
standard blendshape coefficients a∗ for these expressions [Li et al.
2010]. We formulate this constraint as a regularization energy:

Ereg = ‖a − a
∗‖2. (7)

We then solve for M and a via

argmin
M,a

El + wregEreg. (8)

This energy is minimized using the coordinate-descent method, by
alternately optimizing each parameter while fixing the others in
each iteration. We initialize a to a∗. In computing M, we use
the POSIT algorithm [Dementhon and Davis 1995] to find the rigid
pose of the 3D mesh in the current iteration. In solving for a, we use
the gradient projection algorithm based on the BFGS solver [Byrd
et al. 1995] to restrict the range of coefficients to between 0 and
1. The weight wreg balances fitting error and consistency with the
standard expression values. We set it to wreg = 10 in our imple-
mentation. As done in solving Eq. 4, we update in each iteration the
mesh vertex indices vl corresponding to contour landmarks, using
the method in [Yang et al. 2011].

After computing the rigid transformation matrix and expression co-
efficients for each image Ii, we generate their corresponding face

meshes by M(B0 +
∑46

i=1 αiBi). From the 3D meshes we extract
the 3D positions of facial landmarks to obtain the 3D facial shape
for each image. We denote this set of face shapes as {So

i }.

Data Augmentation. To achieve better generalization in represent-
ing facial shapes, we augment the data of captured images and their

3D facial shapes. Specifically, for each captured image and its fa-
cial shape, (Ii, S

o
i ), we translate the 3D shape So

i along each of
the three camera coordinate axes to get m − 1 additional shapes
{Sij , 2 ≤ j ≤ m}. Instead of computing the images that corre-
spond to the additional shapes, we simply record the transformation
matrix Ma

j that maps Sij back to the original shape So
i , which to-

gether with Sij , Ii, and the camera’s projection matrix Q provides
enough information to retrieve the appearance data of the image
that corresponds to the shape Sij . Included with this set is the orig-
inal shape So

i , which we will denote also as Si1 with an identity
transformation matrix. This data augmentation process expands the
n original data to n ·m, represented as {(Ii,M

a
j , Sij)}. The aug-

mented set of shapes {Sij , 1 ≤ i ≤ n, 1 ≤ j ≤ m} defines what
we call a 3D shape space, which spans the range of 3D facial shapes
for the user.

Training Set Construction. To each of the augmented im-
age/shape data we assign various initial shape estimates to obtain
the training set for the regression algorithm. Since initial shape
estimates for a video frame at run time will be determined based
on the face shape of the preceding frame, we choose the initial
shapes Sc

ij for training set construction considering both locality
and randomness. For each image/shape pair (Ii,M

a
j , Sij), we first

find the G most similar shapes {Sig , 1 ≤ g ≤ G} to Sij from
the n original shapes {So

i }, and then randomly choose H shapes
{Sigjh , 1 ≤ h ≤ H} from among the additional shapes gen-
erated from each Sig in the data augmentation step. This yields
G · H initial shapes for Sij , and each training data can be repre-
sented as (Ii,M

a
j , Sij , Sigjh). To compute the similarity between

two shapes, we first align their centroids and calculate the sum
of squared distances between their landmarks. A smaller sum of
squared distances indicates greater shape similarity.

After generating the initial estimate shapes, we have N = n·m·G·
H training data. For all the examples in this paper, we set m = 9,
G = 5 and H = 4.

Camera Calibration. The camera projection matrix describes a
mapping from 3D points in camera coordinates to 2D points in an
image. It is dependent on the internal parameters of the camera, and
can be expressed as

Q =





fx γ u0

0 fy v0
0 0 1



 , (9)

where the parameters fx and fy represent the focal length in terms
of pixel width and height, γ describes the skew between the x and y
axes, and u0 and v0 represent the principal point, where the optical
axis intersects the image plane. There exist many camera calibra-
tion algorithms (e.g., [Zhang 2000]) that can be used to compute
these parameters with standard calibration targets (e.g., a planar
chessboard pattern).

Currently we use a simple method to estimate Q directly from the
user’s setup images, without the need for special calibration targets.
Specifically, we assume the camera to be an ideal pinhole camera,
where f = fx = fy , γ = 0, and (u0, v0) is at the center of the im-
age. This leaves a single unknown, f , in the matrix. Given a value
of f , we can compute the user-specific blendshapes {Bi} by solv-
ing Eq. (3) and (4), and then fit the face mesh by minimizing Eq. (8).
As shown in Fig. 5, the fitting errors of face meshes in Eq. (8) form
a convex function with respect to f . Since incorrect values of f lead
to distortions in the projected points, the minimum error occurs at
the true value of f , which was identified using [Zhang 2000]. We
can solve for f with a binary search, and this simple technique was
found in our experiments to give satisfactory results.
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Figure 5: Fitting errors using different f values for two cameras.
Our calibration method computes f = 580 for the Kinect camera
and f = 960 for the ordinary web camera. The ground truth values
computed from [Zhang 2000] are 576 and 975 respectively. The
relative errors are less than 2%.

4.3 Training

With the N training data {(Ii,M
a
i , Si, S

c
i )}, we learn a regression

function from Sc
i to Si based on intensity information in the image

Ii. We follow the two-level boosted regression approach (with T
stages in the first level and K stages in the second level) proposed
by Cao et al. [2012] to combine a set of weak regressors in an ad-
ditive manner, but extend it to 3D. Each weak regressor computes a
shape increment from image features and updates the current face
shape according to Eq. (10). Each regressor is learnt by minimizing
the sum of landmark alignment errors.

For the first level of the regressor, we generate a set of index-pair
features that will be used by a collection of weak regressors at the
second level. These index-pair features are computed from the ap-
pearance vector of a 3D facial shape (e.g., Sc

i ). An appearance
vector, which serves as a substitute for the face image in the re-
gression analysis, is composed of the intensities at P randomly se-
lected 3D facial points p, each represented as the sum of a land-
mark position in Sc

i and an offset dp
1. The intensity value of p is

obtained from its corresponding 2D position in image Ii, computed
as ΠQi

(Ma
i p). The intensity values of the P points are assembled

to form the appearance vector Vi of 3D facial shape Sc
i . This proce-

dure of calculating the appearance vector of Sc
i will be denoted as

App(Ii,M
a
i , S

c
i , {dp}). For each appearance vector Vi, we gen-

erate P 2 index-pair features by computing the differences between
each pair of elements in Vi.

The second regression level employs a set of weak regressors which
are collectively used to infer the 3D face shape. To learn a good re-
gressor from the training data, effective index-pair features for the
data need to be selected. We determine these features based on
their correlation to the regression target, by calculating the differ-
ence between the ground truth shape Si and the current shape Sc

i ,
projecting this difference to a random direction to produce a scalar,
and then choosing the index-pair with the highest correlation with
this scalar. This technique of random projections has been shown
to be a powerful tool for dimensionality reduction [Bingham and
Mannila 2001]. We repeat this process F times to yield F index-
pair features, which together are used to build a primitive regressor
structure called a fern [Dollar et al. 2010].

In a fern, each of the F features is assigned a random threshold
value between the minimum and maximum differences of element
pairs in the appearance vectors, and these thresholds divide the
space of index-pair feature values into 2F bins. For each training

1We generate P points around the landmark vertices according to a

Gaussian distribution. For each sample point, we find its nearest landmark

vertex and calculate the offset dp.

Algorithm 1 3D shape regression training

Input: N Training data (Ii,M
a
i , Si, S

c
i )

Output: Two-level boosted regressor

1: /* level one */
2: for t = 1 to T do

3: {dt
p} ← randomly generate P offsets

4: for i = 1 to N do
5: Vi ← App(Ii,M

a
i , S

c
i , {d

t
p})

6: Compute the P 2 feature values for Vi

7:

8: /* level two */
9: for k = 1 to K do

10: for f = 1 to F do
11: Yf ← randomly generate a direction
12: for i = 1 to N do
13: δSi ← Si − Sc

i

14: ci ← δSi · Yf

15: Find the index-pair with the highest correlation with
{ci}, and randomly choose a threshold value

16: for i = 1 to N do
17: Calculate the features in Vi using the F index-pairs
18: Compare the features to the thresholds and determine

which bin the data belongs to
19: for i = 1 to 2F do
20: Compute δSbi according to Eq. (10)
21: for each training data l ∈ Ωbj do
22: Sc

l ← Sc
l + δSbi

data, we evaluate its index-pair feature values and determine which
bin in the index-pair space it belongs to. After classifying all the
training data in this way, we take the set of training data in each bin
b, which we denote as Ωb, and determine the regression output that
would minimize its alignment error. Following [Cao et al. 2012],
the regression output δSb is calculated as

δSb =
1

1 + β/|Ωb|

∑

i∈Ωb
(Si − Sc

i )

|Ωb|
, (10)

where |Ωb| is the number of training data in the bin, and β is a free
shrinkage parameter that helps to overcome the problem of over-
fitting when there is insufficient training data in the bin.

Once we generate the fern, we update the current shapes for all
training data. For all training data in each bin b, we add the regres-
sion output to the current shape: Sc

i = Sc
i + δSb.

The regressor training procedure is iterated T times, each with
K ferns, to progressively refine the regression output. Increas-
ing the number of iterations in the two-level boosted regression
(T,K) and the number of sample points P will bring more ac-
curacy at the expense of greater computation. We empirically fixed
the regression parameters to the following in our implementation:
T = 10, K = 300, P = 400, F = 5, β = 250.

4.4 Run-time Regression

With this 3D shape regressor, we can obtain the 3D facial shape S
for the image I in the current video frame using a few good ini-
tial estimates of S generated from the shape S′ computed for the
previous frame. As described in Algorithm 2, we first transform
S′ to its most similar shape Sr in the original shape set {So

i } via
a rigid rotation and translation (Ma). This transformation of S′ to
S′∗ is intended to align S′ (and thus the face shape S for the cur-
rent frame) with the 3D shape space as much as possible. Then we
find the L most similar shapes {Sl} to the transformed shape S′∗
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Algorithm 2 Run-time regression

Input: Previous frame’s facial shape S′, current frame’s image I
Output: Current frame’s facial shape S

1: Get the shape Sr in {So
i } most similar to S′

2: Find the rigid transformation Ma that best aligns S′ with Sr

3: S′∗ ←MaS′

4: {Sl} ← Choose L shapes most similar to S′∗ in the training
data

5: for l = 1 to L do
6: for t = 1 to T do
7: V ← App(I, (Ma)−1, Sl, {d

t
p})

8: for k = 1 to K do
9: Get the F index-pairs recorded during training

10: Calculate the F appearance feature values for V
11: Use the feature values to locate its bin b in the fern
12: Get δSb in b
13: Sl ← Sl + δSb

14: S∗ ← Compute the median shape of {Sl, 1 ≤ l ≤ L}
15: S ← (Ma)−1S∗

from among all the 3D shapes in the training data. Each chosen
shape Sl is used as an initial shape estimate and is passed through
the regressor.

In the first level of regression, we get the appearance vector V based
on the image I , current shape Sl, the inverse of transformation ma-
trix Ma, and the offsets {dt

p} recorded during training. In the sec-
ond level of regression, we calculate the features according to the
F index-pairs recorded in the fern, and compare the feature values
with the recorded thresholds to locate its bin b, which contains δSb.
Finally, we update the current shape as Sl = Sl + δSb.

Once we obtain the regression results for all {Sl}, we take the me-
dian shape as the final shape in the 3D shape space, and invert the
transformation Ma to get the shape S for the current frame.

This run-time regression algorithm contains two elements designed
to promote robust feature alignment that is free of drifting artifacts
even in the case of large head rotations and exaggerated expres-
sions. First, instead of using the shape S′ from the previous frame
as the initial estimate of the current shape, which is a common
choice among video feature tracking algorithms, we use S′ to ob-
tain a set of similar shapes {Sl} in the shape space to be used as
initial shapes for regression. This helps the regression to better deal
with uncertainty in S′ and to avoid error accumulation.

Second, instead of directly choosing initial shapes similar to S′

from the shape space, we choose shapes similar to the transformed
shape S′∗ for regression, and transform the regression result back.
The reason for doing so is that regression without using the trans-
formation Ma computes a linear interpolation of the shapes in the
training data as the regression result. If the 3D facial shape for the
current frame has a head orientation quite different from the shapes
in the training data, linear interpolation cannot produce a good re-
sult because rotation is a nonlinear transformation. We solve this
problem by computing a transformation Ma from S′ to its most
similar shape Sr in the original shape set {So

i }. Since face motion
is smooth, S′ and S should have similar orientations. Applying Ma

to S′ (and S) will align them with the shape space formed by the
training data. Even if Sr and the generated initial shapes {Sl} still
have different orientations from S, the difference will be relatively
small and the regression will be effective since small rotations can
be well handled by linear interpolation.

Our experiments show that our regression algorithm can track 3D
facial landmarks accurately and efficiently over different poses and

Figure 6: Run-time regression results using our algorithm (top
row). If we use the previous frame’s shape as the initial shape di-
rectly, we may accumulate error which causes drift (middle row). If
we omit the transformation Ma in regression, the linear interpola-
tion cannot handle faces with large rotations (bottom row).

expressions. In Fig. 6, we compare tracking results with and with-
out the two aforementioned robustness elements.

5 Face Tracking

The real-time tracking process is driven by the facial shape regres-
sor, which provides the 3D positions of landmarks in each video
frame. Facial motion can be separated into two components: rigid
head pose represented by the transformation matrix M, and non-
rigid expressions modeled by the expression coefficient vector a.
Both of these components can be solved by minimizing the follow-
ing energy:

Et =
75
∑

k=1

∥

∥

∥

∥

∥

M(B0 +
46
∑

j=1

αjBj)
(vk) − S(k)

∥

∥

∥

∥

∥

2

, (11)

where S(k) is the 3D position of the k-th landmark in S and vk is
the corresponding vertex index on the face mesh.

Similar to [Weise et al. 2011], we add an animation prior to enhance
temporal coherence in the tracking. Given the coefficient vectors
for previous frames An = {a−1,a−2, ..., a−n}, we combine them
with the current frame’s coefficients a into a single vector (a,An),
and formulate it as the following Gaussian mixture model:

p(a,An) =
S
∑

s=1

πsN (a,An|µs, Covs). (12)

This Gaussian mixture model is trained using pre-generated anima-
tion frames as in [Weise et al. 2011]. The mixture model is used to
formulate a prior energy on a with respect to the previous frames:

Eprior = − ln p(a,An). (13)

Adding the animation prior to Eq. (11), we can compute the trans-
formation matrix and expression coefficients via

argmin
M,a

Et +wpriorEprior, (14)
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where the weight wprior is set to 1 in our experiments. This min-
imization problem can be solved using an iterative two-step ap-
proach. We first use the coefficients from the previous frame to
initialize a and solve for the transformation matrix M. This be-
comes a 3D registration problem between the regressed 3D facial
shape and the face mesh computed using a, which can be easily
solved through singular value decomposition (SVD) on the cross-
covariance matrix of the two point distributions [Besl and McKay
1992]. We then fix M and optimize a. This can be performed us-
ing an iterative gradient solver. We precompute the gradients of
Eq. (13) by the method described in [Weise et al. 2011], and use the
gradient projection algorithm based on the BFGS solver [Byrd et al.
1995] to constrain the expression coefficients to lie between 0 and
1. We iteratively perform the two-step optimization until conver-
gence. In our experiments, two iterations give satisfactory results.
Note that unlike in solving Eq. (8), we do not need to update any
vertex indices vk in each iteration because they all correspond to
internal landmarks as described in Sec. 3.

6 Experimental Results

We implemented our system on a PC with an Intel Core i7 (3.5GHz)
CPU and an ordinary web camera (recording 640 × 480 images at
30 fps). The user interaction for data preprocessing is easily man-
ageable, as the user needs only to adjust 2D landmark positions in
the setup images. Tracking results (for both the rigid transformation
and expression coefficients) can be transferred to any digital avatar
with pre-created blendshapes (see Fig. 10). The simple require-
ments of the system make it well suited for interactive applications
like computer games and virtual communication. Please see the
supplementary video for a live demonstration of our system.

In the following, we first describe the user interaction and timings
for the preprocessing stage, as well as the timings for the run-time
algorithm. Next, we evaluate the accuracy of our 3D shape regres-
sion algorithm and compare it to previous methods. Finally we
discuss limitations of our method.

User Interaction and Timings. In the setup stage, the user needs
to perform a sequence of 60 facial poses/expressions. We show
a sequence of rendered images of a standard face model with the
different expressions, and ask the user to perform the head poses
and expressions shown in each of the images. This simple cap-
turing process takes less than 10 minutes even for first-time users.
The automatic feature alignment algorithm [Cao et al. 2012] pro-
vides accurate 2D landmark positions for most facial features and
images, but some of them still need manual adjustment. For a first-
time user, this process takes about 25 minutes (for the first author of
this paper, it takes less than 15 minutes). Note that the facial land-
marks to be hand-labeled are relatively distinctive features, such
as the face contour, eye boundaries, and mouth boundary. The 15
non-distinctive landmarks shown in Fig. 3(b)(d) are automatically
computed by projecting a set of pre-defined vertices in the fitted
mesh onto the image. Our algorithm is also robust to small errors
in labeling. Other data preparation tasks (including user-specific
blendshape generation, camera calibration and training data prepa-
ration) and the shape regression training are all automatically com-
pleted in less than 10 minutes. In total, the setup and preprocessing
take less than 45 minutes for a novice user.

At run time, the shape regression is performed at 5ms per frame
(with 15 initial shapes). Face tracking from the regressed shape
takes about 8ms per frame. Overall the run-time performance of
this algorithm is high (less than 15ms), because it is determined
by the number of landmarks and initial shapes, and independently
of the resolution of video frames. This makes our algorithm very
promising for implementation on mobile devices. On the current

(a) (b) (c) (d)

Figure 7: Comparison of our 3D shape regression, 2D shape re-

gression and optical flow. With the same training data, 3D shape
regression (top row) can handle expressions and poses that are hard
to represent by interpolation of 2D shapes (middle row). For these
large head poses with expressions, optical flow results may exhibit
drift (bottom row).

PC, the system runs at over 24 fps.

Note that for the first video frame, we need to estimate the 3D facial
shape and use it to initialize the regression. This is achieved by
applying the 2D shape regressor [Cao et al. 2012] to automatically
locate the landmark positions, and then using the 3D facial shape
recovery algorithm described in Sec. 4.2. The same procedure can
be performed when tracking fails.

Evaluation and Comparison. To evaluate the accuracy of our 3D
shape regression algorithm, we compared it to ground truth ob-
tained using a Kinect RGBD camera with manually labeled 2D
landmark positions in each frame. While our algorithm processes
only the RGB information from the Kinect, the depth data and the
Kinect’s projection matrix are used to determine the actual depth
values of the labeled 2D landmarks. In this way, we can get the
ground truth 3D facial shapes for comparison to our regressed
shapes. Fig. 8 shows the depth values of a mouth corner from
both the ground truth shapes and our regressed shapes over different
frames (other landmarks have similar curves). It is shown that the
depth estimated by our algorithm is very close to the depth acquired
from the Kinect, with a difference of less than 10mm. The screen
projections of landmarks from the ground truth and our regression
also match closely, as shown in the supplementary video.

The 2D regression algorithm of [Cao et al. 2012] can be used to
compute the 2D landmark positions for each video frame and can
achieve accurate results when the face is oriented frontally (see
Fig. 7(a), second row). However, if the face is oriented away
from the front, the computed shapes may deviate significantly from
the ground truth (see Fig. 7(c)(d), second row) as the shape space
formed by the training shapes cannot represent these shapes using
only linear interpolation. By contrast, our algorithm can generate
much more accurate shapes (see Fig. 7, top row). It works in the 3D
space and is capable of removing the effects of nonlinear pose rota-
tions by aligning the current face to the shape space formed by the
training shapes. Also, by using projections of 3D facial shapes to
compute their appearance vectors in images, it can more accurately
locate pixels with the same semantic meaning. Note that increasing
the number of captured images and training data with different rota-
tions can improve the accuracy of 2D regression. This, however, re-
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Figure 8: Comparison of depth from 3D shape regression and
ground truth from Kinect.

RMSE < 3 pixels < 4.5 pixels < 6 pixels

3D Regression 73.3% 80.8% 100%

2D Regression 50.8% 64.2% 72.5%

Optical Flow 20.8% 24.2% 41.7%

Table 1: Percentages of frames with RMSE less than given thresh-
olds for the tested video sequence.

quires considerable data to handle all possible rotations, which not
only is less practical to capture but also may lead to many more er-
rors in manual landmark labeling. In Table 1, we measure the errors
(in pixels) for the screen projection of landmarks of different algo-
rithms compared with the ground truth positions. We also compare
our algorithm with the face tracking method based on multilinear
models [Vlasic et al. 2005], which links optical flow with the pa-
rameters of the face model. While multilinear models are powerful
enough to represent different faces with different expressions, opti-
cal flow approaches may accumulate errors temporally and produce
drifting artifacts in the tracking results in some situations, such as
when the face moves quickly (see Fig. 7, bottom row). Our algo-
rithm is more robust to fast motions as the facial shape is regressed
with a broader set of initial shape estimates from the shape space.

Discussion. Some limitations of our shape regression approach
arise from its reliance on facial appearance information in the video.
Our system can deal with some partial occlusions, since distortion
in a small part of the face appearance will not necessarily derail the
user-specific shape regressor. However, our system may output in-
correct shapes when there are larger occlusions (see Fig. 9 and the
accompanying video). Once the occluder moves away, the regressor
can quickly recover the correct shape. A possible way to deal with
this problem to some degree is to include additional training data
containing common occluders (e.g., hands). Another limitation is
in handling dramatic changes in lighting. The regression algorithm
can handle lighting changes to a modest extent, and it works well in
situations where the background is changing and the lighting is not
changing dramatically. But if the lighting environment differs sub-
stantially from that during the setup capture, the regression will not
generate accurate shapes because face appearance can change sig-
nificantly under different lighting conditions. This issue could be
alleviated to some extent by capturing facial images in several typi-
cal environments, like in an office, hotel and outdoors, and training
the regressor with them. This may broaden the range of lighting
environments that can be handled.

With its use of depth data, the recent Kinect-based method in
[Weise et al. 2011] is relatively more robust to occlusions and light-
ing changes. However, the Kinect camera has restrictions in its cap-
ture, since it does not operate effectively in outdoor environments
with sunlight, and has a limited working range, meaning that the
user cannot move too near or too far from the camera. Our experi-
ence with the commercial system Faceshift based on [Weise et al.
2011] indicates that the face needs to be within 1.5m to get satis-
factory results. Our approach is not affected by these problems, as

Figure 9: Top row: regression results under occlusions. Bottom
row: regression results under lighting changes.

long as the face can be recognized in the video.

Currently our system employs a two-step procedure to track facial
animations – first regressing the 3D positions of facial landmarks,
and then computing the head poses and expression coefficients. It
is possible to directly regress the rigid transformation and expres-
sion coefficients by adapting the training and run-time regression
algorithms accordingly. This one-step approach could further im-
prove the performance of our system as the number of transfor-
mation parameters and expression coefficients is much fewer than
that of the landmarks. However, we did not take this one-step ap-
proach for several reasons. First, direct regression cannot guaran-
tee that the expression coefficients are between 0 and 1. Simply
clamping the coefficients may introduce undesirable results. Fur-
thermore, it is not clear how to consider the animation prior in the
regressor, which is critical for temporal coherence in the tracking.
Finally, unlike our current two-step approach where the landmark
positions (i.e., the regression target) are handled in the same man-
ner, the one-step approach may need to deal with the rigid transfor-
mation and expression coefficients in different ways as they are in
different spaces. For example, in the training process, when select-
ing effective index-pair features, the correlation to the head trans-
lation, rotation and expression coefficients needs to be computed
with carefully-chosen weights to reflect their proper influences on
the features. We would like to explore these problems in the future.

7 Conclusion

We presented a regression approach for 3D facial performance cap-
ture from 2D video. Our experiments show robust, real-time track-
ing results that compare favorably to related techniques. We believe
our system significantly advances the state of the art in facial ani-
mation by providing a practical solution for ordinary users.

There are a couple of extensions to our system that we plan to in-
vestigate in future work. First, we are interested in removing the
effects of lighting variations in both the training images and run-
time video stream through intrinsic image decomposition. If this
decomposition can be performed in real time, our algorithm can
become more robust to large lighting changes without the use of
additional training images. Another direction for future work is to
estimate the lighting environment from the video stream, and uti-
lize photometric techniques to recover fine-scale details of the face
shape. Synthesis of these details could lead to more convincing
facial animations.
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Figure 10: Real-time performance-based facial animation. From
left to right: a video frame, tracked mesh, two digital avatars.
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